

Simplifying DIY Light Sheet Microscopes

ASI's SPIM Team

John Zemek Gary Rondeau **Jon Daniels** President Technical Director SPIM Lead Engineer

EMBO I EMBL symposium "Seeing is Believing" 04 October 2017, Heidelberg Germany

Outline

- Why light sheet microscopy?
- How can ASI help?
- Examples:
 - iSPIM/diSPIM
 - oSPIM or π SPIM
 - dSPIM for cleared tissue
 - SPIM for functional imaging in zebrafish
- Synchronization and software

https://commons.wikimedia.org/wiki/File%3ALsfm_lightsheetinsample.svg (CC BY-SA 3.0)

Publications using light sheet

Why light sheet microscopy?

- Minimize photodamage/bleaching
 - Better utilize "photon budget"
 - Keep living things living
- Rapid acquisition
 - 2D parallel imaging
- Main cost is optics for generating light sheet

By Jan Krieger, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=22333698

Generating the sheet

- Sheet thickness trades off with width of thin region (FOV)
- Increasingly complex optics can give increasingly better thinness and/or FOV

Weber et al., Cur. Opinion in Genetics and Development 21, 566-572 (2011)

An aside: terminology

LSFM = light sheet fluorescence microscopy SPIM = selective plane illumination microscopy DLSM = digital light sheet microscopy

- Some reserve "SPIM" for static light sheet; we use "SPIM" = LSFM for scanned or static sheet
 - Important thing is planar illumination
 - ASI systems have option of light sheet generator for static sheet or scanned sheet so we name by the geometry instead of the light sheet type

Sub-sampling of configurations APPLIED SCIENTIFIC

9

Why so many configurations?

- Different samples ⇔ different microscopes
 - (Everybody wants their own paper)
 - Steric constraints
 - Mounting requirements
 - Imaging requirements \rightarrow different motion control
- Paradigm shift: single costly microscope for all samples → multiple inexpensive microscopes each customized for sample/application

How can ASI help?

- ASI's core competencies
 - Motion control
 - Modular microscopes
- How we work
 - Customer-driven
 - Collaborate with leading researchers
 - Everything happens under one roof

Motion control: ASI's heritage

- 1D and 2D motorized stages
- Piezo stages
 - Stage top-plates
 - Objective movers

Control electronics

MS2000 4-axis controller best for simple microscopes up to one piezo axis.

TG-1000 Modular controller for motorized and piezo stages, filter wheels, laser scanners, PMTs, LEDs, tunable lenses, laser triggering, etc.

Modular microscopes

- Microscope as simple or complex as required
- User-accessible light path in compact formfactor without freespace optics
- Easily upgraded and modified in field
- Many modules available; more are designed every year

RAMM frame

- Supports the microscope assembly and the stage in a manner that minimizes drift and vibration
- Many mounting holes and support points for easy adaptation

Modular infinity microscopes

- Include LS-50 Focus Drive "backbone"
- Beam-splitter and Mirror attached to LS-50
- Wide selection of imaging and illumination optical paths can be attached to CUBEs
- A single objective or manual & automated nosepieces are supported

MIM2-OSM25-PII

MIM system map

Cubes

- 60mm CUBES function to define optical combinations and paths
- Internal filter cube (C60-D_CUBE) holds standard 25mm filters and 25mm x 36mm dichroics or mirrors
- CUBE-II and CUBE-III have adjustable
 mirror tilt
- CUBE-II has quick-change latches

Port switches

Port switches to select illumination path or camera.

C60-3WMS Three-way Manual Selects between two side ports or straight-through port depending upon position (or presence) of the mirror slide.

C60-PORT_SWITCH Motorized

Automated for switching the common port between the two side ports.

Filter slider

- Automated or Manual
- Same form-factor as standard C60-CUBEs
- Removable filter cartridge for filter loading

SLIDER NEEDS TO BE IN POSITION 1 FOR REMOVAL, DUST COVER SNAPS ON/OFF

Tube lenses

- All Tube Lenses use same format lengths vary
- "Collimated space" fitting is our 38mm C60-RING
- Focal plane is 60mm from end of lens tube
- "Focus space" fitting is "Zeiss-like" 30mm dovetail
- Many choices from 70mm to 500mm focal length

Epi-illumination

LFP-E100 Fiber-Coupled Laser Illuminator Assembly

Illumination assemblies made with modular lens components, easy to tailor for particular application

Multi-LED illuminators

Individual LEDs easily combined into an illuminator assembly controlled by single TGLED electronics card

CRISP focus stabilization

- CRISP system holds
 focus using a reference
 surface with a refractive
 index mismatch such as
 glass/air or glass/water
 slide interface.
- Uses IR LED projected onto sample

 Continuous hardware focus correction by integrating with with Z drive (motorized or piezo)

Example: putting it together

Exploded diagram of a MIM2 microscope system for a single objective with camera port, liquid light guide epiillumination source, and CRISP autofocus.

Transmitted light options

- Olympus IX2-LWUCD condenser
- ASI White LED Lamp
- ASI adjustable condenser carrier
- Olympus nose piece for DIC or Phase contrast brightfield imaging modes

TIRF on the RAMM

- TIRF fiber-coupled illuminator includes either manual or motorized micrometer for setting the injection point and TRIF angle.
- Simple cage section for focusing laser spot exactly at the objective back focal plane.

Filter wheels

- Engineered for very low vibration
- Can be installed in the C-mount fitting or in collimated space.
- Wheels for eight
 25mm filters or six
 32mm filters available.
- TGFW control card handles two wheels.

Fiber-coupled scanners

- Fiber in, focused scanned beam at output C-mount image plane
- Applications include:
 - Light sheet
 - FRAP
 - Photo-stimulation

Cylindrical lens scanner

• Static sheet vs. scanned

- Faster frame rates b/c no scanning and no need to blank laser during camera readout
- Less expensive
- Intensity varies across sheet
- Can't use virtual slit mode
- No "stop motion" effect
- Cylindrical lens and Gaussian
 beam only differ by single lens
 - use either one with any system

- Optotune electronically tunable lens integrated into ASI system including synchronizable electronics
- For imaging path applications, have relay lens system with C-mount interfaces on both ends

Software support

- MS2000 controller (up to 4 axes) supported in almost all microscopy softwares
- TG1000 controller (modular) supported in Micro-manager and some others
 - ASI actively maintains Micro-Manager device adapters for all our hardware devices
- LabView drivers available from ASI
- Everything happens via serial commands

Outline

- Why light sheet microscopy?
- How can ASI help?
- Examples:
 - iSPIM/diSPIM
 - oSPIM or π SPIM
 - dSPIM for cleared tissue
 - SPIM for functional imaging in zebrafish
- Synchronization and software

Original iSPIM Concept

- SPIM on inverted microscope → "iSPIM"
- Sample mounted on standard glass coverslip
- 30x faster than spinning disk for same SNR

Wu et. al, PNAS 108, 17708-17713 (2011)

Resolution is anisotropic

Lateral resolution ~ 0.61* λ /NA Axial resolution ~ 1.22* λ /NA²

(Other equations exist depending on how you define thresholds)

	Lateral Res	Axial Res	Ratio
NA	@ GFP [nm]	@ GFP [nm]	(all λ)
0.4	778	3889	5.0
0.6	519	1728	3.3
0.8	389	972	2.5
1	311	622	2.0
1.2	259	432	1.7

Improving (axial) resolution

- Improve axial resolution of imaging objective

 i.e. higher NA
 (any single-view SPIM e.g. oSPIM)
- Create light sheet thinner than objective's axial resolution (lattice light sheet)
- Combine datasets from different angles
 - Axial direction becomes lateral (diSPIM, OpenSPIM)
- Physically section sample
 - Not practical for most samples
diSPIM = dual-view SPIM on inverted microscope

Sample

Excitation light sheet

Emission

- Two (fixed) views → isotropic resolution
- Open-dish sample mounting
- Stacks by moving objective/light sheet or by moving stage

Isotropic resolution by fusion

Joint Decon: A. York and Y. Wu

Wu et al. *Nat. Biotechnol.* 31, 1032-138 (2013), Kumar et al. *Nature Protocols* 9, 2555-2573 (2014)

Early diSPIM (2011?)

Modern diSPIM

- 1. SPIM mount
- 2. RAMM frame
- 3. Objective mount
- 4. Objective piezo
- 5. Bottom-side microscope
- 6. CDZ centering stage
- 7. SPIM LS-50 Z-drive
- 8. Camera mirror cubes
- 9. Excitation filter cubes
- 10.Camera tube lens
- 11.Scanner tube lens
- 12.Spacer
- 13.Light sheet scanners
- 14.XY stage (large MS2500)

diSPIM workflow

diSPIM objective geometry

- Have to co-focus without physically bumping → limited NA
- NA 0.8 (Nikon 40x) is close to maximum possible NA for symmetric water objectives at 90°

Oblique SPIM resolution

Lateral @ Axial @				
NA	GFP [nm]	GFP [nm]		
0.4	778	3889		
0.6	519	1728		
0.8	389	972		
1	311	622	←	
1.2	259	432		

iSPIM/diSPIM, isotropic "lateral" resolution with post-processing

oSPIM @ NA 1.0 vs. (d)iSPIM:
lateral resolution 20% better
axial resolution 36% better vs.
iSPIM, 60% worse vs. diSPIM

NB: oSPIM/doSPIM design works up to NA 1.1

oSPIM objective geometry

- Create light sheet sideways from objective by illuminating off-center in BFP (partway to TIRF)
 - \rightarrow >90° objective angle
 - \rightarrow higher NA objectives
 - \rightarrow improved resolution
- Independently invented as "πSPIM" Sci. Rep. 6:32880 (2016)

Bottom objective creates tilted light sheet for imaging with top objective

Dual-view system, objectives sequentially generate light sheet and image like diSPIM

oSPIM in real life

a new configuration! (all mounting blocks)

Cleared tissue objective

Spec	Value	Comments	
Numerical Aperture	0.4 @ RI 1.45	0.37 – 0.43 over RI range	
Dipping Media RI	1.33 – 1.56	Includes all major clearing solutions	
Effective Focal Length	12 mm @ RI 1.45	15.3x – 17.9x over RI range w/ 200 mm TL	
Working Distance	12 mm (for all RI)	5.1 mm imaging depth for flat sample @ 45°	
Field of View	1.2 mm Ø		
Correction Collar	None	For immersion w/o coverslip	
Price	\$15k	Available Oct 2017	

dSPIM

- Sample on XYZ stage and SPIM head is fixed
 - Better for large samples like cleared tissue

- No inverted microscope
- No objective piezos (stage scanning)

dSPIM features

- Image >5 mm deep into cleared samples with XY extent limited only by stage (200x200 mm)
- Sub-micron stage repeatability → easy stitching
- Redesigned SPIM head
 - reduce collimated space
 - wider apertures
 - more modular

Functional zebrafish imaging

Vladimirov et al. Nature Methods 11, 883-884 (2014)

• ASI offers all the required parts already, just have to connect them in this configuration

Synchronization

- Light sheet, piezos and/or XY stage, cameras, and lasers must be tightly synchronized → need hardware synchronization
- 2 approaches:
 - Generate synchronized control voltages yourself
 - Use synchronization within Tiger controller
 - High-level software specifies timing parameters
 - Saves lots of implementation effort to let ASI controller coordinate sub-millisecond timing of components

Don't forget about software

- Developing control software is major task...
 - User interface
 - Hardware control
 - Save images with metadata
 - Live view for alignment
- ... but it's already been done for you!
- Spend time working on science, not developing microscope control software!

Micro-manager plugin features APPLIED SCIENTIFIC

- Acquisition Modes:
 - Synch. slice/piezo
 - Fixed sheet
 - Stage scan
 - Virtual slit confocal
- Multi-Dimensional Acq.
 - Time points
 - Multi-position
 - Multi-channel

- Supported cameras:
 - Andor Zyla
 - PCO Edge
 - Hamamatsu Flash 4
 - Photometrics 95B
- Supported lasers:
 - Lasers with dual port switch or passively split
 - 4 channels on/off via TTL

Works for iSPIM, diSPIM, oSPIM, dSPIM, and more

Micro-manager plugin

- Built in to MM: Plugins->Devices->ASI diSPIM
- Fully open source including ASI contributions

🛃 ASI diSPIM Control						
Navigation Setup Path A	Durations [] Time points	Multiple positions (XY)	Volume Settings			
Setup Path B	Slice: 30.75 ms	Edit position list	Number of sides: 2 🗸			
Acquisition Data Analysis	Volume: 1,738 ms		First side: 🛛 🗸 👻			
Devices	Total: 1.738 s	Post-move delay [ms]: 1	Delay before side [ms]: 500 🚔			
Settings Help	Data Saving Settings	Channels	Slices per volume: 12			
	Separate viewer / file for each time point	Channel group: Excitation Source 👻	Slice step size [µm]:			
	Hide viewer 📝 Save while acquiring	Use? Preset +	Minimize slice period			
	Directory root: \ASI_Test\AcquisitionData	√ 488nm - √ 561nm -	Slice period [ms]: 20			
	Name prefix: test		Sample exposure [ms]: 20.5 🚔			
Scan A	SPIM mode: Synchronous piezo/slice scan (standard) 🗸	Change channel: Every volume 👻	Calculate slice timing			
Scan B Piezo A	→ Start! No acquisition in progress.	Use Navigation joystick settings	Use advanced timing settings			
Piezo B						

Advantages of Micro-Manager

- Free and open-source
 - Zero cost, download anywhere anytime
 - Fully modifiable and liberally licensed
 - Documentation and community support make it easy to augment code if you want/need
- Facilitates reproducibility
 - Easy to change hardware e.g. different camera
 - Easy to distribute your to other labs

ASI SPIM ongoing developments

- Structured illumination for better-than-Gaussian light sheet profile
- Tunable lens for remote focusing
- Tunable lens for adjusting beam waist
- 2-photon light sheet
- Combining XYZ tracking of moving samples with light sheet

Conclusion

- ASI makes it easy to build custom light sheet microscopes
 - Modular hardware components
 - Synchronization done in controller
 - Functional yet user-extensible software
- ASI loves working with leading scientists to create the next thing; how can we help you?